Generalized Bernstein Polynomials and Symmetric Functions
نویسندگان
چکیده
We begin by classifying all solutions of two natural recurrences that Bernstein polynomials satisfy. The first scheme gives a natural characterization of Stancu polynomials. In Section 2, we identify the Bernstein polynomials as coefficients in the generating function for the elementary symmetric functions, which gives a new proof of total positivity for Bernstein polynomials, by identifying the required determinants as Schur functions. In the final section, we introduce a new class of approximation polynomials based on the symplectic Schur functions. These polynomials are shown to agree with the polynomials introduced by Vaughan Jones in his work on subfactors and knots. We show that they have the same fundamental properties as the usual Bernstein polynomials: variation diminishing (whose proof uses symplectic characters), uniform convergence, and conditions for monotone convergence.
منابع مشابه
Numerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials
In this paper, we introduce hybrid of block-pulse functions and Bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. Then, we utilize them to solve delay differential equations and time-delay system. The method is based upon e...
متن کاملPolarization constant $mathcal{K}(n,X)=1$ for entire functions of exponential type
In this paper we will prove that if $L$ is a continuous symmetric n-linear form on a Hilbert space and $widehat{L}$ is the associated continuous n-homogeneous polynomial, then $||L||=||widehat{L}||$. For the proof we are using a classical generalized inequality due to S. Bernstein for entire functions of exponential type. Furthermore we study the case that if X is a Banach space then we have t...
متن کاملGeneralized Chebyshev polynomials of the second kind
We characterize the generalized Chebyshev polynomials of the second kind (Chebyshev-II), and then we provide a closed form of the generalized Chebyshev-II polynomials using the Bernstein basis. These polynomials can be used to describe the approximation of continuous functions by Chebyshev interpolation and Chebyshev series and how to efficiently compute such approximations. We conclude the pap...
متن کاملBuckling and vibration analysis of angle -ply symmetric laminated composite plates with fully elastic boundaries
The main focus of this paper is on efficiency analysis of two kinds of approximating functions (characteristic orthogonal polynomials and characteristic beam functions) that have been applied in the Rayleigh-Ritz method to determine the non-dimensional buckling and frequency parameters of an angle ply symmetric laminated composite plate with fully elastic boundaries. It has been observed that o...
متن کاملCoefficient Estimates for a General Subclass of m-fold Symmetric Bi-univalent Functions by Using Faber Polynomials
In the present paper, we introduce a new subclass H∑m (λ,β)of the m-fold symmetric bi-univalent functions. Also, we find the estimates of the Taylor-Maclaurin initial coefficients |am+1| , |a2m+1| and general coefficients |amk+1| (k ≥ 2) for functions in this new subclass. The results presented in this paper would generalize and improve some recent works of several earlier authors.
متن کامل